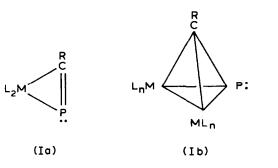
Preliminary communication

USE OF COORDINATED PHOSPHAALKYNE LIGANDS IN TRANSITION METAL CLUSTER INTERLINKAGE. SYNTHESIS OF DIMOLYBDENUM-TRIRUTHENIUM AND DIMOLYBDENUM-TRIOSMIUM COMPLEXES $[Mo_2M_3(\eta^5-C_5H_5)_2(CO)_{15}(^{t}BuCP)], (M = Ru, O_8)$ AND CRYSTAL AND MOLECULAR STRUCTURE OF DI- η^5 -CYCLOPENTADIENYLTETRA-CARBONYL- μ -(3,3-DIMETHYL-1-PHOSPHABUTYNE)-triangulo-TRI-OSMIUM(0), $[Mo_2(\eta^5-C_5H_5)_2(CO)_4(\mu^{-t}BuCP)O_{8_3}(CO)_{11}]$

RAINER BARTSCH, PETER B. HITCHCOCK, MOHAMED F. MEIDINE and JOHN F. NIXON*

School of Chemistry and Molecular Sciences, University of Sussex, Brighton BN1 9QJ, Sussex (Great Britain)


(Received February 6th, 1984)

Summary

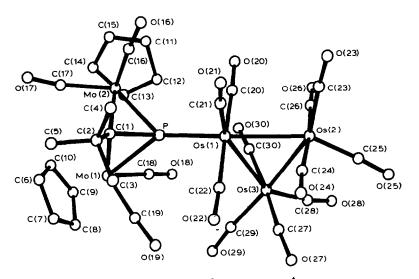
The phosphaalkyne ligand in $[Mo_2(\eta^5 - C_5H_5)_2(CO)_4(^tBuCP)]$ can be used in transition metal cluster interlinkage.

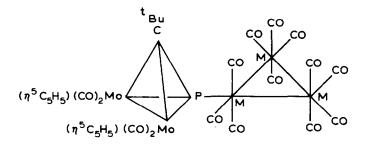
Previously [1-4] we described syntheses of novel mono- and di-nuclear phosphaalkyne complexes (Ia and Ib) in which the phosphaalkyne $RC \equiv P$ is coordinated to the metal via its π -system (Ia, M = Pt, L = PPh₃ [1], L₂ = diphos [4]; L₂ = triphos [3]. Ib, L_nM = Co(CO)₃ [2], Mo(η^{5} -C₅H₅)(CO)₂ [2]; R = ^tBu).

The lone pair of electrons on phosphorus in Ia and Ib is potentially available for utilisation in further bonding to transition metals and coordination of Ib to the $W(CO)_5$ fragment has been achieved [2,4].

0022-328X/84/\$03.00 © 1984 Elsevier Sequoia S.A.

We now report the first examples of the use of coordinated RCP ligands in transition metal cluster interlinkage which promises to have application for linking a variety of metal polyhedra. Thus treatment of Ib $(ML_n = Mo(\eta^5 \cdot C_5H_5) \cdot (CO)_2)$ ($\delta(^{31}P) - 252$ ppm (rel. TMP)) with $[Os_3(CO)_{11}(CH_3CN)]$ in THF at room temperature leads to quantitative formation of the deep red dimolybde-num-triosmium complex $[Mo_2(\eta^5 \cdot C_5H_5)_2(CO)_4(^tBuCP)Os_3(CO)_{11}]$ (II), ($\delta(^{31}P) - 287.4$ ppm; $^1H(CDCl_3)$: 5.2 (s, C_5H_5 , (10H), 1.3 (s, tBu , (9H)) whose IR spectrum showed the presence of only terminal carbonyl bonds ($\nu(CO)(THF)$): 2100 m, 2050ms, 2030ms, 2010s, 1975ms, 1955m, 1920m, 1910sh cm⁻¹).




Fig. 1. The molecular structure of $[Mo_2(\eta^5-C_5H_5)_2(CO)_4(\mu^{-t}BuCP)Os_3(CO)_{11}]$. Selected dimensions are: Os(1)--Os(2),2.860(1), Os(1)--Os(3) 2.892(1), Os(2)--Os(3) 2.860(1), Os(1)--P 2.360(3), Mo(1)--P 2.514(3), Mo(2)--P 2.397(3), Mo(1)--C(1) 2.36(2), Mo(2)--C(1) 2.33(1), P--C(1) 1.86(1), C(1)--C(2) 1.37(2) Å; P--C(1)--C(2) 132(1)°.

The analogous deep red ruthenium complex (III) $(\delta({}^{31}P) - 234.9 \text{ ppm}; {}^{1}H-(CDCl_3) 5.2 (d, C_5H_5, (10H), 1.35 s {}^{t}Bu (9 H))$ was obtained by direct reaction of $[Mo_2(\eta^5-C_5H_5)_2(CO)_4({}^{t}BuCP)]$ with $[Ru_3(CO)_{12}]$ in THF in the presence of Me₃NO and exhibits a similar IR spectrum ($\nu(CO)$ hexane: 2180w, 2140s, 2120m, 2104s, 2084m, 2060w, 2036w, 2000w cm⁻¹). The ready formation of II and III from Ib is interesting in view of the complete lack of donor ability of the phosphorus atoms in the structurally related $[Co_2(CO)_6P_2]$ complex [5]*.

Confirmation of the proposed structures was established by a single crystal Xray diffraction study of the osmium complex II recrystallised from dichloromethane/heptane.

Crystal data: $C_{30}H_{19}Mo_2O_{15}Os_3P$, monoclinic, $P2_1/c$, a 16.319(1), b 12.268(2), c 18.264(2) Å, β 90.84(1)°, Z = 4. The structure was solved by heavy atom methods and refined to R = 0.055 by least-squares using 3644 reflections with $I > \sigma(I)$ measured on a CAD4 diffractometer with Mo- K_{α} radiation.

^{*}Very recently complexes of the type $[Co_2(CO)_6P_2(MLn)_2]$ (MLn = $Cr(CO)_5$, W(CO)₅ have been obtained by an indirect route (H. Lange, L. Zsolnai, and G. Huttner, Angew. Chem., 95 (1983) 1017).

 $(\Pi, M = Os; \Pi, M = Ru)$

An interesting feature of the structure of II is the very long C–P bond length of the coordinated phosphaalkyne (1.86(1) Å) which is typical for a single C–P bond and contrasts with the shorter C–P distances found in other phosphaalkyne complexes e.g. 1.672(17) Å in $[Pt(PPh_3)_2(^tBuCP)]$ [1], 1.695(6) Å in $[Co_2(CO)_6(^tBuCP)W(CO)_5]$ [2]; 1.719(3) Å in $[Mo_2(CO)_4(\eta^5 \cdot C_5H_5)_2(^tBuCP)]$ [6] and 1.733(12) Å in $[Mo_2(CO)_4(\eta^5 \cdot C_5H_5)_2(^tBuCP)W(CO)_5]$ [4]. Typical $P \equiv C$ and P = C bond lengths in uncoordinated phosphaalkynes and phosphaalkenes are 1.544 and 1.67 Å, respectively [7,8].

Acknowledgement. We thank the SERC for financial support for the work.

References

- 1 J.C.T.R. Burckett St. Laurent, P.B. Hitchcock, H.W. Kroto and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1981) 1141.
- 2 J.C.T.R. Burckett St. Laurent, P.B. Hitchcock, H.W. Kroto, M.F. Meidine, and J.F. Nixon, J. Organomet. Chem., 238 (1981) C82.
- 3 S.I. Al-Resayes, S.I. Klein, H.W. Kroto, M.F. Meidine, and J.F. Nixon, J. Chem. Soc., Chem. Commun., (1983) 930.
- 4 P.B. Hitchcock, S.I. Klein, M.F. Meidine, and J.F. Nixon, unpublished results.
- 5 A. Vizi-oroz, V. Galamb, G. Palyl, and L. Marko, J. Organomet. Chem., 216 (1981) 105.
- 6 G. Becker, W.A. Herrmann, W. Kalcher, G.W. Kriechbaum, C. Pahl, T. Wagner, and M.L' Ziegler, Angew. Chem. Suppl., (1983) 501.
- 7 H.W. Kroto and J.F. Nixon in Am. Chem. Soc. Symposium Series No. 171, Phosphorus Chemistry, (1981) 383.
- 8 R. Appel, F. Knoll, and I. Ruppert, Angew. Chem. Int. Ed. Engl., 20 (1981) 731.